Sponsored Links
-->

Monday, May 14, 2018

Periodicity: A couple more things - Adrian Dingle's Chemistry Pages
src: wps.prenhall.com

This page deals with the electron affinity as a property of isolated atoms or molecules (i.e. in the gas phase). Solid state electron affinities are not listed here.


Video Electron affinity (data page)



Elements

Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion. Either convention can be used. Whereas ionization energies are always concerned with the formation of positive ions, electron affinities are the negative ion equivalent.

Negative electron affinities can be used in those cases where electron capture requires energy, i.e. when capture can occur only if the impinging electron has a kinetic energy large enough to excite a resonance of the atom-plus-electron system. Conversely electron removal from the anion formed in this way releases energy, which is carried out by the freed electron as kinetic energy. Negative ions formed in these cases are always unstable. They may have lifetimes of the order of microseconds to milliseconds, and invariably autodetach after some time.


Maps Electron affinity (data page)



Molecules

The electron affinities Eea of some molecules are given in the table below, from the lightest to the heaviest. Many more have been listed by Rienstra-Kiracofe et al. (2002). The electron affinities of the radicals OH and SH are the most precisely known of all molecular electron affinities.


Pseudo-classical Electrons in Chemistry | Proceedings of the Royal ...
src: rspa.royalsocietypublishing.org


Bibliography

  • Janousek, Bruce K.; Brauman, John I. (1979), "Electron affinities", in Bowers, M. T., Gas Phase Ion Chemistry, 2, New York: Academic Press, p. 53 .
  • Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.; Nandi, S.; Ellison, G.B. (2002), "Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations", Chem. Rev., 102, pp. 231-282, doi:10.1021/cr990044u .
  • Updated values can be found in the NIST chemistry webbook for around three dozen elements and close to 400 compounds.

Specific molecules

  • Adams, C.L.; Schneider, H.; Ervin, K.M.; Weber, J.M. (2009), "Low-energy photoelectron imaging spectroscopy of nitromethane anions: Electron affinity, vibrational features, anisotropies, and the dipole-bound state", J. Chem. Phys., 130: 074307, Bibcode:2009JChPh.130g4307A, doi:10.1063/1.3076892 
  • Borshchevskii, A.Ya.; Boltalina, O.V.; Sorokin, I.D.; Sidorov, L.N. (1988), "Thermochemical quantities for gas-phase iron, uranium, and molybdenum fluorides, and their negative ions", J. Chem. Thermodyn., 20 (5): 523, doi:10.1016/0021-9614(88)90080-8 
  • Chaibi, W.; Delsart, C.; Drag, C.; Blondel, C. (2006), "High precision measurement of the 32SH electron affinity by laser detachment microscopy", J. Mol. Spectrosc., 239: 11, Bibcode:2006JMoSp.239...11C, doi:10.1016/j.jms.2006.05.012 
  • Chowdhury, S.; Kebarle, P. (1986), "Electron affinities of di- and tetracyanoethylene and cyanobenzenes based on measurements of gas-phase electron-transfer equilibria", J. Am. Chem. Soc., 108: 5453, doi:10.1021/ja00278a014 
  • Ervin, K.M.; Ho, J.; Lineberger, W.C. (1988), "Ultraviolet photoelectron spectrum of nitrite anion", J. Phys. Chem., 92: 5405, doi:10.1021/j100330a017 
  • Ervin, K.M.; Lineberger, W.C. (1991), "Photoelectron spectra of C-
    2
    and C2H-", J. Phys. Chem., 95: 1167, doi:10.1021/j100156a026
     
  • George, P.M.; Beauchamp, J.L. (1979), "The electron and fluoride affinities of tungsten hexafluoride by ion cyclotron resonance spectroscopy", Chem. Phys., 36: 345, Bibcode:1979CP.....36..345G, doi:10.1016/0301-0104(79)85018-1 
  • Goldfarb, F.; Drag, C.; Chaibi, W.; Kröger, S.; Blondel, C.; Delsart, C. (2005), "Photodetachment microscopy of the P, Q, and R branches of the OH-(v=0) to OH(v=0) detachment threshold", J. Chem. Phys., 122: 014308, Bibcode:2005JChPh.122a4308G, doi:10.1063/1.1824904 
  • Huang, Dao-Ling; Dau, Phuong Diem; Liu, Hong-Tao; Wang, Lai-Sheng (2014), "High-resolution photoelectron imaging of cold C-
    60
    anions and accurate determination of the electron affinity of C60", J. Chem. Phys., 140: 224315, Bibcode:2014JChPh.140v4315H, doi:10.1063/1.4881421
     
  • Kim, J.B.; Weichman, M.L.; Neumark, D.M. (2015), "Low-lying states of FeO and FeO- by slow photoelectron spectroscopy", Mol. Phys., 113: 2105, Bibcode:2015MolPh.113.2105K, doi:10.1080/00268976.2015.1005706 
  • Mathur, B.P.; Rothe, E.W.; Tang, S.Y.; Reck, G.P. (1976), "Negative ions from phosphorus halides due to cesium charge exchange", J. Chem. Phys., 65: 565, Bibcode:1976JChPh..65..565M, doi:10.1063/1.433109 
  • Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I. (1984), "Spectroscopy and dynamics of the dipole-bound state of acetaldehyde enolate", J. Chem. Phys., 81: 4883, Bibcode:1984JChPh..81.4883M, doi:10.1063/1.447515 
  • Miller, T.M.; Leopold, D.G.; Murray, K.K.; Lineberger, W.C. (1986), "Electron affinities of the alkali halides and the structure of their negative ions", J. Chem. Phys., 85: 2368, Bibcode:1986JChPh..85.2368M, doi:10.1063/1.451091 
  • Nimlos, Mark R.; Ellison, G. Barney (1986), "Photoelectron spectroscopy of sulfur-containing anions (SO-
    2
    , S-
    3
    , and S2O-)", J. Phys. Chem., 90: 2574, doi:10.1021/j100403a007
     
  • Novick, S.E.; Engelking, P.C.; Jones, P.L.; Futrell, J.H.; Lineberger, W.C. (1979), "Laser photoelectron, photodetachment, and photodestruction spectra of O-
    3
    ", J. Chem. Phys., 70: 2652, Bibcode:1979JChPh..70.2652N, doi:10.1063/1.437842
     
  • Page, F. M.; Goode, G. C. (1969), Negative ions and the magnetron, John Wiley & Sons 
  • Ruoff, R.S.; Kadish, K.M.; Boulas, P.; Chen, E.C.M. (1995), "Relationship between the Electron Affinities and Half-Wave Reduction Potentials of Fullerenes, Aromatic Hydrocarbons, and Metal Complexes", J. Phys. Chem., 99: 8843, doi:10.1021/j100021a060 
  • Schiedt, J.; Weinkauf, R. (1995), "Spin-orbit coupling in the O-
    2
    anion", Z. Naturforsch. A, 50 (11): 1041, Bibcode:1995ZNatA..50.1041S, doi:10.1515/zna-1995-1110
     
  • Schiedt, J.; Weinkauf, R. (1999), "Resonant photodetachment via shape and Feshbach resonances: p-benzoquinone anions as a model system", J. Chem. Phys., 110: 304, Bibcode:1999JChPh.110..304S, doi:10.1063/1.478066 
  • Schulz, P.A.; Mead, R.D.; Jones, P.L.; Lineberger, W.C. (1982), "OH- and OD- threshold photodetachment", J. Chem. Phys., 77: 1153, Bibcode:1982JChPh..77.1153S, doi:10.1063/1.443980 
  • Sheps, L.; Miller, E.M.; Lineberger, W.C. (2009), "Photoelectron spectroscopy of small IBr-(CO2)n(n=0-3) cluster anions", J. Chem. Phys., 131: 064304, Bibcode:2009JChPh.131a4304G, doi:10.1063/1.3200941 
  • Travers, M.J.; Cowles, D.C.; Ellison, G.B. (1989), "Reinvestigation of the electron affinities of O2 and NO", Chem. Phys. Lett., 164: 449, Bibcode:1989CPL...164..449T, doi:10.1016/0009-2614(89)85237-6 
  • Troe, J.; Miller, T.M.; Viggiano, A.A. (2012), "Revised electron affinity of SF6 from kinetic data", J. Chem. Phys., 136: 121102, Bibcode:2012JChPh.136b1102G, doi:10.1063/1.3698170 
  • Wenthold, P.G.; Kim, J.B.; Jonas, K.-L.; Lineberger, W.C. (1997), "An Experimental and Computational Study of the Electron Affinity of Boron Oxide", J. Phys. Chem. A, 101: 4472, doi:10.1021/jp970645u 
  • Zanni, M.T.; Taylor, T.R.; Greenblatt, B.J.; Soep, B.; Neumark, D.M. (1997), "Characterization of the I-
    2
    anion ground state using conventional and femtosecond photoelectron spectroscopy", J. Chem. Phys., 107: 7613, Bibcode:1997JChPh.107.7613Z, doi:10.1063/1.475110
     

Chemistry Archive | March 10, 2017 | Chegg.com
src: i67.tinypic.com


References


Elements of the Periodic System
src: www.engineeringtoolbox.com


See also

Source of article : Wikipedia